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Summary

Population-based tests of association have used data
from either case-control studies or studies based on trios
(affected child and parents). Case-control studies are
more prone to false-positive results caused by inappro-
priate controls, which can occur if, for example, there
is population admixture or stratification. An advantage
of family-based tests is that cases and controls are well
matched, but parental data may not always be available,
especially for late-onset diseases. Three recent family-
based tests of association and linkage utilize unaffected
siblings as surrogates for untyped parents. In this paper,
we propose an extension of one of these tests. We de-
scribe and compare the four tests in the context of a
complex disease for both biallelic and multiallelic mark-
ers, as well as for sibships of different sizes. We also
examine the consequences of having some parental data
in the sample.

Introduction

Family-based tests such as the transmission/disequilib-
rium test (TDT) have proved to be powerful tools in the
search for disease genes (Spielman and Ewens 1996).
Depending on the data structure, these are tests of either
linkage or linkage and association. Unlike case-control
tests, the tests are not affected by population stratifi-
cation, which can lead to spurious associations of a
marker allele with disease susceptibility.

Family-based tests have largely required knowledge of
parental marker genotypes; however, for late-onset dis-
eases, parental data are often not available. Recently,
Curtis (1997), Boehnke and Langefeld (1998), and Spiel-
man and Ewens (1998) have each developed tests of
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linkage and association that use unaffected siblings as
surrogates for untyped parents. For two-allele markers,
the three tests are equivalent, but, for multiple-allele
markers, the tests can be different. For a multiple-allele
marker, Curtis proposed a likelihood ratio (LR) test sim-
ilar to the extended transmission/disequilibrium test of
Sham and Curtis (1995). The discordant-alleles test
(DAT) of Boehnke and Langefeld is based on a Pearson
homogeneity statistic for a contingency table, and2 # m
a permutation procedure is used to perform the test. For
the sib-TDT (S-TDT), Spielman and Ewens calculated a
two-allele statistic for each marker allele; the test is based
on the maximum of the absolute value of these statistics.
To perform the test, they use the same permutation pro-
cedure as Boehnke and Langefeld use.

The S-TDT generalizes to sibships that contain more
than single affected and single unaffected siblings; how-
ever, when using these larger sibships, the test is valid
only as a test of linkage. An alternative approach for
analyzing larger sibships, proposed by Curtis (1997) and
resulting in a test of linkage and association, is to reduce
each sibship to two siblings, by first randomly choosing
an affected individual and then choosing the unaffected
sibling whose marker genotype is maximally different
from that of the affected sibling. This strategy does not
depend on the test statistic and can also be used for the
tests proposed by Boehnke and Langefeld (1998) and
Spielman and Ewens (1998).

The multiallele TDT statistic, Tmhet, proposed by Spiel-
man and Ewens (1996), suggests a sib statistic, TMSTDT,
that can be calculated for a marker with any number of
alleles and for sibships of any size, with the assumption
that each sibship has at least one affected and at least
one unaffected sibling. The statistic generalizes the S-
TDT statistic, since it reduces to the square of the sta-
tistic for a biallelic marker. Just as for S-TDT, the test
based on TMSTDT is a test of linkage and association if
the sample contains only sibships with one affected and
one unaffected individual and is a test of linkage if the
sample contains larger sibships. The permutation pro-
cedure of Boehnke and Langefeld (1998) and Spielman
and Ewens (1998) can be used to perform the test. Al-
ternatively, simulations show that, under either the null
hypothesis of no linkage or the null hypothesis of no
linkage or no association, the distribution of TMSTDT can
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be approximated with a x2 distribution with dfm � 1
when the marker has m alleles.

To compare the powers of the four tests, a simulation
study was conducted for several complex-disease mod-
els. For a multiallele marker and sibships of size 2, the
powers of the DAT and the TMSTDT test to detect linkage
and association are comparable. The power of the S-
TDT relative to those of the DAT and the TMSTDT test is
dependent on the nature of the association between the
marker and disease alleles. If the association is concen-
trated on only a few of the marker alleles, then the S-
TDT can be more powerful. Alternatively, if the asso-
ciation is spread over most of the alleles, then the S-
TDT can be less powerful. The LR test was consistently
less powerful than the other three tests. When one is
testing for linkage, the simulations suggest that it is pref-
erable not to reduce the size of each sibship as proposed
by Curtis (1997). However, if one requires a test of link-
age and association, then one has no choice but to reduce
the size of each sibship, for the tests described in the
present study.

Curtis (1997) and Spielman and Ewens (1998) have
considered the possibility that some of the sibships in
the sample have parental data. The statistic TMSTDT gen-
eralizes for these mixed data, and the distribution of the
resulting statistic, under either of the null hypotheses,
can also be approximated with a x2 distribution with

df. The simulations suggest that it is advantageousm � 1
to combine families for which there are parental data
and families for which parental data are not available.

Methods

Notation

Suppose that we have a marker locus with m alleles,
M1,M2,),Mm, and a disease locus with two alleles, D1

and D2. We define D1 as the “disease” allele and denote
its frequency as “p.” Penetrances, frs, are the probabilities
that an individual with disease genotype DrDs is affected
with the disease; it is assumed that . Wef x f x f11 12 22

assume, unless stated otherwise, a random-mating pop-
ulation with no selection or mutation. The population
disease prevalence is 2A � p f � 2p(1 � p)f � (1 �11 12

, with population-attributable risk,2p) f AR � (A �22

. The recombination fraction between the diseasef )/A22

and the marker locus is v. The frequency of marker allele
Mi in the population is Pr(Mi), whereas Pr(MiFDr) is the
probability that a gamete carries marker allele Mi, given
that it carries allele Dr at the disease locus. Finally, sup-
pose that we have sampled NS sibships, each of which
contains at least one affected individual and at least one
unaffected individual. A sibship will not be informative
if the marker genotypes are the same for all sibs. The
minimal configuration for a sibship is thus one affected

and one unaffected sibling with different marker geno-
types. For our simulations, NS is always the number of
sampled families, and, therefore, some fraction of these
families will not be informative.

If there is no linkage between the marker and the
disease loci, then, for each sib, regardless of the size of
the sibship, the affection status and the marker genotype
are independent. Alternatively, if there is linkage but no
association between alleles at the two loci, then the af-
fection status and the marker genotype of each sib are
independent only for sibships with exactly one affected
and one unaffected sibling. Even in the absence of as-
sociation, linkage can cause excess sharing of marker
alleles among affected siblings, and this is the basis of
affected-sib-pair tests (Ott 1991). Therefore, by com-
paring marker-allele frequencies in affected sibs with
those in unaffected sibs, for a sample of sibships with
the minimal configuration, we can test the null hypoth-
esis of no linkage or no association; however, for samples
containing larger sibships, we can test only the null hy-
pothesis of no linkage.

Permutation Procedure

Boehnke and Langefeld (1998) and Spielman and Ew-
ens (1998) used a permutation procedure to determine
significance. Under either the null hypothesis of no link-
age or no association, for samples of sibships with min-
imal configuration, or the null hypothesis of no linkage,
for samples containing larger sibships, an affected in-
dividual is equally likely to have any of the marker geno-
types that are contained in the sibship. Thus, randomly
permuting the affection status of the sibs in each sibship
leads to a new sample, which, under the null hypothesis,
is statistically equivalent to the original sample. To per-
mute a sibship with a affected sibs in a total of t sibs,
a of the sibs are selected at random to be affected, and
the remaining sibs are labeled “unaffected.” By use of
this procedure, an empirical null distribution can be con-
structed for any statistic, T, and significance can be cal-
culated. Rather than calculate T for all possible per-
mutations of the data set, as would be done for a
permutation test, a Monte-Carlo approximation is used.
The steps are as follows:

1. calculate T, with value T0, for the data set;
2. for each sibship, randomly permute affection status;
3. calculate T on this pseudosample and determine

whether it is more extreme than To;
4. repeat steps 2 and 3 NI times and estimate the P

value as the proportion of times that the test statistic is
more extreme than To;

5. reject the specified null hypothesis if the p-value is
less than or equal to some specified a.

To perform the test on any particular data set, only one
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P value is needed, and thus NI should be large. However,
for power calculations, NO P values must be estimated
by simulating NO data sets from the population, and so,
to keep computing time to a feasible level, we have used
a smaller value of NI. For our simulations, N � 300I

with . Our choice of NI and NO gave ade-N � 1,000O

quate control of the bias and variability of the power
estimates. Estimates of significance levels on the basis of
the x2 distribution do not require the use of the per-
mutation procedure, and thus a larger value of NO can
be used. We have used .N � 10,000O

Test Statistics

Curtis (1997) and Boehnke and Langefeld (1998) were
interested in a test for association and considered sam-
ples of sibships only with the minimal configuration.
Curtis (1997) shrank larger sibships to the minimal con-
figuration by selecting an affected individual at random
and then choosing the unaffected sibling whose marker
genotype was maximally different from that of the af-
fected sibling. Curtis’s statistics are based on the values
of Tij, with , which are defined as follows. Eachi ( j
marker allele in the affected individual is compared with
each marker allele in that individual’s unaffected sibling.
If the pair of marker alleles are the same, the comparison
is ignored. If the pair of marker alleles are different, then
.5 is added to Tij, where Mi is the marker allele in the
affected individual and Mj is the marker allele in the
unaffected sibling. For a biallelic marker, Curtis (1997)
defined a statistic that is asymptotically standard normal
under the null hypothesis of no linkage or no association,

, where Ni is the�Z � [T � (N /2 � N )]/ N /4 � Nc 12 1 2 1 2

number of sibships that increase either T12 or T21 by i.
For multiallele markers, Curtis adopted a likelihood
framework similar to that of Sham and Curtis (1995).
The likelihood is based on the probabilities, Pij with

, that an affected individual has marker allele Mii ( j
whereas that individual’s unaffected sibling has marker
allele Mj. Curtis modeled Pij with parameters B1,B2,),Bm

defined by . The null hypothesis of noln(P /P ) � B � Bij ji i j

linkage or no association is tested by comparing the
likelihood, L0, evaluated at for all i, to the like-B � 0i

lihood, La, maximized over Bi, on the assumption that
only . Under the null hypothesis of no linkage orB � 01

no association, likelihood theory would suggest that the
distribution of the test statistic canLR � �2 ln (L /L )o a

be approximated by a x2 distribution with df. Wem � 1
show, however, that this approximation can perform
poorly if only sibships with minimal configuration have
been collected.

Boehnke and Langefeld (1998) represent the marker-
allele data in a contingency table in which the2 # m
rows represent affection status and the columns repre-
sent marker alleles. For sibships of minimal configura-

tion, the genotypes of the affected individuals and their
unaffected siblings are different, and hence there are two
types of sibships that contribute counts to the contin-
gency table. If the marker alleles in the two sibs are all
different, then all four marker alleles are counted in the
table. Alternatively, if an affected individual and its un-
affected sibling have a marker allele in common, then
these marker alleles are ignored and only the two dif-
ferent marker alleles are counted in the table. If nij de-
notes the count for the (i,j)th cell, then the statistic is
the Pearson homogeneity statistic

m 2(n � n )1i 2iAC � .�2 n � ni�1 1i 2i

Because of the correlation between sibling genotypes, the
Monte Carlo permutation procedure is used to measure
significance. Boehnke and Langefeld (1998) considered
a number of other statistics but recommended the use
of AC2. They also considered a test based on a maximum
statistic. Significance is measured using the same pro-
cedure as Spielman and Ewens (1998), described below.

For each marker allele Mi, Spielman and Ewens (1998)
define the random variable, Yi, which is the number of
Mi alleles in the affected individuals from all sibships.
Under the described permutation procedure, both the
theoretical permutation mean, Aik, and the variance, Vik,
can be calculated for the kth sibship’s contribution to
Yi (for the formulas, see the Appendix). The normalized
statistic is

NSY �� Ai k�1 ik
Z � .i NS�� Vk�1 ik

For a biallelic marker, the test statistic is Z1. Significance
can be calculated by use of the Monte Carlo permutation
procedure, or, for large samples, the P value can be es-
timated from the standard normal distribution. For a
marker locus with m alleles, the statistic is

Z � max d Z d .max i
i�1)m

The Monte Carlo permutation procedure is used to mea-
sure significance.

The statistic that we propose for a marker with m
alleles is

mm � 1 2T � Z .�MSTDT im i�1

Arguments similar to those of Martin et al. (1997) sug-
gest that the distribution of TMSTDT, under either the null
hypothesis of no linkage or the null hypothesis of no
linkage or no association, is very nearly x2 with m � 1
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Table 1

Marker Frequency Distributions

MARKER

(NUMBERa)

Pr(Mi), FOR

i � 1 i � 2 i � 3 i � 4 i � 5 i � 6

Unimodal (1) .500 .100 .100 .100 .100 .100
Bimodal (2) .300 .300 .100 .100 .100 .100
Uniform (3) .167 .167 .167 .167 .167 .167

a For marker-frequency distributions.

df. We have explored a wide variety of models by use
of computer simulations (nine of which are given here)
and have found this to be true. To avoid confusion, we
will use “ ” and “ ” to denote2MC � T x � TMSTDT MSTDT

whether the significance of the test is estimated by use
of the Monte Carlo permutation procedure or by use of
x2 critical values.

If we are testing for linkage and association by using
a biallelic marker, then all four tests are equivalent. The
square of Zc and the S-TDT statistic are equal to TMSTDT.
Furthermore, the permutation procedure using the S-
TDT statistic is equivalent to use of the DAT statistic.
This can be seen from the following (for the derivation,
see the Appendix):

NS� Vk�1 1k 2AC � 2 Z .2 1( )NS� V � N /2k�1 1k 2

Since the coefficient of is invariant under the per-2Z1

mutation procedure, the S-TDT and DAT are equivalent.
For multiallele markers, the four tests are not equivalent,
and thus our attention will focus on comparing their
performance for such markers.

It may be possible to collect parental marker geno-
types for some sibships. Curtis (1997) and Spielman and
Ewens (1998) extended their statistics for this situation.
Curtis added the number of transmissions of marker
allele Mi to affected individuals from heterozygous MiMj

parents to the Tij from families without parental infor-
mation. These combined counts are used in the same
framework as above. Spielman and Ewens based their
statistic on the sum of Yi calculated for the NS families
that do not have parental marker genotypes and Xi, the
number of transmissions of allele Mi to affected indi-
viduals from a total of Nhi transmissions to affected in-
dividuals from parents heterozygous for marker allele
Mi. The Zi can now be written:

NS(Y � X ) � (� A � n /2)i i k�1 ik hi
Z̃ � .i NS�� V � n /4k�1 ik hi

For a biallelic marker, the statistic is ; for a multialleleZ̃1

marker, the statistic is . The com-˜ ˜Z � max d Z dmax i�1...m i

bined statistic that we propose is

mm � 1 2˜T � Z .�mcomb im i�1

If only one of the parental marker genotypes is known,
then the recommendations given by Curtis and Sham
(1995) should be used to determine whether the trans-
mission information can be used without introduction
of bias. If it cannot, then the sibship information should
be used instead. This applies to both the Curtis (1997)

and Spielman and Ewens (1998) statistics, as well as to
Tmcomb.

To simplify notation, we will refer to each test in terms
of the test statistic that is used to measure its signifi-
cance—for example, for a multiallelic marker, the Curtis
test is the LR test, the Boehnke and Langefeld test is the
AC2 test, the Spielman and Ewens test is the Zmax test,
and our test is the TMSTDT test.

Simulation Parameters

For our simulation studies, we define three complex-
disease models. The disease prevalence is .05, and the
disease allele has a frequency of . The three diseasep � .2
models correspond to a dominant, recessive, and addi-
tive disease allele; for each model, phenocopies were in-
troduced to provide an attributable risk of .7; for the
three models, this yielded penetrances, {f11,f12,f22}, of
{.112,.112,.015}, {.89,.015,.015}, and {.19,.1025,.015},
respectively. Setting disease prevalence, disease-allele fre-
quency, the mode of inheritance, and attributable risk
allowed the penetrances to be uniquely determined. We
felt that an investigator would be able to assign values
to these parameters. We also investigated disease models
with a prevalence of .0005, a disease-allele frequency of
.02, and an attributable risk of .7, as well as the models
given by Boehnke and Langefeld (1998, table 2). Results
for all of these models are comparable to those presented
in the present study.

Three different six-allele markers are considered, and
the population allele frequencies are given in table 1.
Following Boehnke and Langefeld (1998), we allow
marker allele M1 to be positively associated with the
disease allele. Association is parameterized by C,
which equals the difference between the probability,
Pr(M1Faffected), that a randomly chosen affected indi-
vidual carries an M1 allele and the probability,
Pr(M1dunaffected), that a randomly chosen unaffected
individual carries an M1 allele. For marker alleles
M2,),Mm, we assume that

Pr (M d affected) � Pr (M d unaffected)i i

Pr (M )i� �C .� Pr (M )ix2 i
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Table 2

Comparison of Power—Zmax versus TMSTDT

NS

POWER OF

CONDITIONAL MARKER-
ALLELE DISTRIBUTION

AND PENETRANCEa Zmax TMSTDT

A:
Incomplete 500 .80 .77
Complete 40 .86 .80

B:
Incomplete 500 .54 .82
Complete 40 .47 .78

a For A, , and6{Pr(M dD )} � {.7,.0333,) ,.0333} {Pr(M di 1 i�1 i

; for B,6 6D )} � {.35,.3833,.0333,) ,.0333} {Pr(M dD )} �2 i�1 i 1 i�1

, and .6{.195,.005,) ,.195,.005} {Pr(M dD )} � {.1,) ,.1}i 2 i�1

Figure 1 Estimates of power for and2x � T MC �MSTDT

, for three different sampling schemes under the 1-D geneticTMSTDT

model. . The sampling schemes correspond to samplingN � 200S

100% sibships of size 2, 50% sibships of size 2 and 50% sibships of
size 6, and 100% sibships of size 6.

For given values of C and v, these equations determine
the conditional marker-allele probabilities Pr(MiFD1)
and Pr(MiFD2), which can be used to calculate the dis-
tribution of parental haplotypes in a family ascertained
on the basis of an affected child (Kaplan et al. 1997).
Once the parental haplotypes are determined, the ge-

notype and affection status of each of the additional
siblings can be generated in the standard way. Only sib-
ships that contain at least one unaffected sib, in addition
to the affected sib on the basis of whom the family was
ascertained, are included in the sample. For given values
of v and C, there are nine marker/disease models. These
population models will be denoted by the marker-dis-
tribution number (table 1) and “D,” “R,” or “A” for
the disease model (e.g., population 1A represents a un-
imodal marker distribution and an additive disease al-
lele). We use a significance level of for all tests.a � .05

A 10-allele marker was used to compare the power
of the Zmax and TMSTDT tests. Two conditional marker
distributions were selected to demonstrate how the rel-
ative power of the tests depends on how the association
is distributed among the marker alleles. One of the con-
ditional marker distributions has the association con-
centrated on 2 of the 10 alleles, and the other has the
association spread among all of the marker alleles (table
2).

Results

x2 Approximation for TMSTDT and Tmcomb

We provide evidence that the test is a valid2x � TMSTDT

test both for linkage and association in sibships with
minimal configuration and for linkage in larger sibships.
Table 3 contains estimates of significance values for the
nine disease/marker models corresponding to C � .15
and . Estimates are shown for sample sizes of 25,v � .5
50, and 100 sibships, as well as for sibship sizes of 2,
4, and 6. For small data sets, the test was2x � TMSTDT

conservative, and the permutation procedure should be
used. This is a result of sparseness in the contin-2 # m
gency table of marker-allele counts in affected and un-
affected individuals. We found similar results for sibships
with minimal configuration for and (dataC � 0 v � 0
not shown). We also examined estimates of significance
for the Tmcomb test, by using x2 critical values, and ob-
tained results analogous to those for the TMSTDT test.
Estimates were computed for different values of q, the
proportion of the sibships having parental information.
As for the TMSTDT test, all estimates of significance esti-
mated by use of the x2 distribution were reasonably ac-
curate, with the exception of . With such a smallN � 25S

sample, the permutation procedure should be used (data
not shown).

The simulations support the validity of the 2x �
test as both a test of linkage and association andTMSTDT

a test of linkage. Thus, powers for the and2x � TMSTDT

tests will also be close. To demonstrate thisMC � TMSTDT

and to explore how power changes for different size
sibships and for different values of C, we compared the
powers of the and tests for the2x � T MC � TMSTDT MSTDT
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Table 3

Estimates of Significance Level for the Test2x � TMSTDT

MODEL

SIGNIFICANCE FORa

N � 100S N � 50S N � 25S

t � 2 t � 4 t � 6 t � 2 t � 4 t � 6 t � 2 t � 4 t � 6

Unimodal:
Dominant .050 .051 .047 .039 .051 .048 .027 .045 .051
Recessive .042 .048 .054 .041 .050 .048 .026 .046 .050
Additive .049 .050 .052 .044 .049 .050 .028 .045 .046

Bimodal:
Dominant .048 .050 .051 .041 .044 .056 .028 .044 .047
Recessive .044 .047 .049 .041 .049 .049 .030 .046 .049
Additive .049 .047 .055 .039 .048 .050 .027 .045 .049

Uniform:
Dominant .047 .046 .051 .042 .050 .047 .029 .047 .045
Recessive .047 .051 .049 .040 .049 .050 .035 .046 .046
Additive .045 .050 .050 .045 .047 .048 .029 .046 .044

a NS is no of sibships sampled, of size t.

following example. We use the model with a dominant
disease allele and unimodal marker distribution with

and . Figure 1 contains power esti-v � .02 N � 200S

mates for three different sampling schemes. The sam-
pling schemes differ on the basis of the size of the sib-
ships sampled. Either all sibships of size 2 or 6 were
sampled or a mixture of 50% sibships of size 2 and 50%
sibships of size 6 were sampled. In all three cases, the
powers estimated by use of the x2 critical values are close
to the Monte Carlo estimates of power. We have found
this to be true for other values of a as well (data not
shown).

As expected, the power of the test increased mono-
tonically with C. Furthermore, the power of the test
increased with the size of the sibship. One reason for
this is that, for larger sibships, more of the sibships are
informative. If pi denotes the probability that a randomly
chosen sibship of size i is informative, then, for the model
in figure 1 with , p2 and p6 are estimated, byC � .15
simulation, as being .54 and .86, respectively. It follows
that, for samples of 200 sibships of size 2, there are, on
average, 108 informative sibships, versus 172 infor-
mative sibships for sibships of size 6; the respective es-
timated powers of the tests are .74 and .96. When the
number of sampled sibships of size 2 was increased to
319 , the power estimate of the test in-(200 # .86/.54)
creased to .91. Therefore, if the sample with sibships of
size 2 is enlarged so that there are, on average, the same
number of informative sibships as are present in the
sample of sibships of size 6, then much of the difference,
in estimated power, between the tests is explained.

The distribution of TMSTDT, under either the null hy-
pothesis of no linkage (sibships of arbitrary size) or the
null hypothesis of no linkage or no association (sibships
of only minimal configuration), does not converge to a
x2 distribution as the number of sibships increases; how-

ever, our results in table 3 suggest that, for a random-
mating population, significance level and power can be
approximated by use of x2 critical values. We also ex-
amined the x2 approximation for a population consisting
of two different strata, each with the unimodal marker-
frequency distribution given in table 1. We assume that
marker allele M1 is the most frequent in stratum 1 and
that marker allele M2 is the most frequent in stratum 2.
Our samples were chosen so that one-half the sibships
came from each stratum. For a dominant disease allele
with and , estimates of significance levelsC � .15 v � .5
were again very close to the nominal level, except for
the case of , for which the test was too conser-N � 25S

vative. The power estimates determined by use of the x2

approximation also were close to the power of the
Monte Carlo test ( ). For example, the samplingv � .02
scheme with 50% sibships of size 2 and 50% sibships
of size 6 yielded estimates of .72 and .73 for the 2x �

and tests, respectively. Similar re-T MC � TMSTDT MSTDT

sults were found when 90% of the sibships came from
stratum 1 and 10% of the sibships came from stratum
2 (data not shown).

Tests of Linkage and Association

We examined the powers of the four tests of the null
hypothesis of no linkage or no association; that is, our
data consisted only of sibships with minimal configu-
ration. For such samples, the x2 approximation for the
distribution of LR under the null hypothesis of no link-
age or no association can be poor. We computed esti-
mates of the significance level (by setting ) for thev � .5
LR test for models 1D, 1R, and 1A for samples con-
sisting of 200 and 600 sibships. Regardless of the num-
ber of sibships sampled, the estimates based on sibships
with minimal configuration are conservative, whereas
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Figure 2 A, Power estimates for tests of linkage and association
(i.e., sibships containing exactly one affected and one unaffected in-
dividual). B, Power estimates for 200 sibships of size 5. Zmax and TMSTDT

use all five sibs, whereas the LR and AC2 use a random affected in-
dividual and the unaffected individual whose marker genotype is max-
imally different from that of the affected individual. All estimates were
computed by use of the Monte-Carlo permutation procedure.

the estimates improve when the maximally different pair
of sibs from sibships of size 5 are used. For example,
the estimates of significance for the dominant disease
model were .031 and .048 for , for sibships ofN � 200S

size 2 and size 5, respectively. Because of the poor x2

approximation for the LR for samples with minimal con-
figuration, we estimated the powers of the four tests (fig.
2A) by using the Monte Carlo permutation procedure.
The results given are for and . For all nineC � .15 v � 0

disease/marker models, the powers of the AC2, Zmax, and
TMSTDT tests were comparable, whereas the LR test was
consistently less powerful. We also compared the powers
of the four tests for samples of size 5, using Curtis’s
strategy to reduce the sibships to minimal configuration,
and found analogous results (data not shown).

The powers of the Zmax and TMSTDT tests were com-
pared for two special cases for a marker with 10 alleles.
The cases differ depending on whether the association
between the marker and disease locus is concentrated
on only a few of the marker alleles or is spread over all
of the marker alleles. The dominant disease model was
used. Table 2 describes each of the models and gives the
power for each case. Values of NS were chosen so that
the powers of the tests were ∼.8. The tests were also
compared by use of a completely penetrant dominant
disease allele. If the association is spread over the marker
alleles, then the Zmax test performs poorly compared with
the TMSTDT test; however, if the association is concen-
trated on only a few of the alleles, then the TMSTDT test
is only somewhat less powerful than the Zmax test.

Tests of Linkage

The powers of the Zmax and TMSTDT tests as tests of
linkage were estimated for samples of sibships of size 5
and were compared with estimates of the power of the
AC2 and LR tests, by use of the reduced sibships pro-
duced by the Curtis (1997) strategy (fig. 2B). For these
simulations, and . This value of C wasv � .02 C � .15
chosen so that the tests would have high power for a
sample of 200 sibships. The Zmax and TMSTDT tests had
comparable power, but the AC2 and LR tests were con-
sistently less powerful, with the AC2 test always more
powerful than the LR test. The drop in power with use
of only two of the five sibs was not great for the AC2

test. For example, for the model with a dominant disease
allele and a unimodal marker distribution, the Zmax and
TMSTDT tests had powers .91 and .93, respectively, and
the AC2 and LR tests had powers .90 and .82, respec-
tively. We expect a minimal loss in power when the size
of the sibships is reduced when the penetrances are low,
since unaffected sibs could carry a disease allele. Alter-
natively, if the penetrances are high, then unaffected sibs
are less likely to carry a disease allele, and reducing the
sibship should result in a much larger loss of power.

The Combined Test Statistic: Tmcomb

For late-onset diseases, the typical data set consists of
sibships without parents. A question that one might ask
is, How much (if any) power is lost by not having pa-
rental data, or, alternatively, how much power is gained
by having some parental data? To investigate these ques-
tions, we simulated samples of 200 families, each con-
taining one affected and one unaffected sib. For a frac-
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Figure 3 Comparison of Tmhet, TMSTDT, and Tmcomb, for the uni-
modal marker distribution; q is the proportion of sibships that have
parental information. The x2 approximation was used with N �S

.200

tion, q, of the families, we recorded the genotypes of
both of the parents, as well as those of all of the sibs;
for the remaining fraction of the families, we recorded
the genotypes of only the sibs. First, we used the com-
plete data set and calculated Tmcomb. We then ignored all
of the parental genotypes and computed TMSTDT. Last,
we ignored the unaffected sib and calculated a TDT
statistic for those families with parental information.
Since we used a multiple-allele marker, we used the sta-
tistic Tmhet, described by Spielman and Ewens (1996).
We give results for the unimodal marker distribution
with and , for all of the disease modelsC � .15 v � .02
(fig. 3). We compared the powers of the three tests as
the proportion, q, of the sibships with parental infor-
mation changes. It is interesting to note that the Tmcomb

test is always more powerful than the other two tests,
regardless of the composition of the data set, suggesting
that it is always possible to have a more powerful test
when parental data are collected. Furthermore, if the
fraction of the sample for which the data set has parental
information is large enough, then ignoring the unaf-
fected sib and using the TDT for the families with pa-
rental data will be more powerful. However, the value
of q at which the Tmhet test becomes more powerful than
the TMSTDT test will depend on the disease/marker model.

Discussion

Although family-based tests have proved to be pow-
erful tools in the search for genes involved in complex
diseases, they have, until recently, required knowledge
of parental marker genotypes. The introduction of sib-
ship tests by Curtis (1997), Spielman and Ewens (1998),
and Boehnke and Langefeld (1998) has brought about
a promising new group of tests for both linkage and
association and linkage. Like the TDT, these tests main-
tain validity even in a stratified population and yet do
not require parental marker genotypes, which, for late-
onset diseases, can be impractical to obtain. As is true
for the introduction of any group of statistics, a number
of questions arise. We have presented simulations that
help answer some of these questions in the context of a
complex disease.

For biallelic markers and samples consisting of sib-
ships with minimal configuration, the Zc, AC2, Z1, and
TMSTDT tests are equivalent. However, for a marker with
more than two alleles, the LR test as a test of linkage
and association was less powerful than the other tests,
and therefore we would not recommend its use. The
other three tests were comparable in power even if the
sample of sibships of minimal configuration was reduced
from larger sibships by use of Curtis’s strategy. The
Monte Carlo permutation procedure can be used to per-
form any of the three tests, and, for small samples, we
would recommend its use. Our results suggest that x2

critical values can be used to determine significance for
the TMSTDT test. This is an attractive feature, especially
if a large number of markers are to be tested; however,
a conservative strategy would be to also perform the
Monte Carlo permutation procedure on all significant
findings, to guard against false-positive results.

For tests of linkage, our results suggest that it is best
to use all sibs rather than to reduce the size of the sibships
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Table A1

Types of Sibships with Minimal Configuration, for a Biallelic
Marker

SIBSHIP

TYPE

GENOTYPE OF SIB
NO. IN

DATA SETAffected Unaffected

1 M1M1 M1M2 N21

2 M1M1 M2M2 N20

3 M1M2 M1M1 N12

4 M1M2 M2M2 N10

5 M2M2 M1M1 N02

6 M2M2 M1M2 N01

by use of Curtis’s strategy. Only the Zmax and TMSTDT

tests use all siblings and result in a valid test of linkage.
These tests differ in how they detect linkage, with Zmax

using a maximum allelic deviation and with TMSTDT sum-
ming deviations over all alleles for a global test. Hence,
the pattern of association between marker alleles and
the disease alleles will impact the relative performance
of the tests. If the association is concentrated on a small
number of the marker alleles, then the Zmax test can be
more powerful; alternatively, if the association is spread
among many marker alleles, then the TMSTDT test can be
more powerful. The powers of the tests depend on the
number of informative sibships sampled. If larger sib-
ships are sampled, then a larger proportion of the sib-
ships will be informative; however, depending on the
disease under study, it may be more economical to sam-
ple more smaller sibships than to sample fewer large
sibships.

It is expected that tests utilizing available parental
marker data—that is, tests such as the TDT—will be
more powerful than tests based only on sibships (Spiel-
man and Ewens 1998). We find that the extent of this
difference will depend on the disease/marker model. The
idea proposed by Curtis (1997) and Spielman and Ewens
(1998)—that is, to combine these two types of
data—allows maximal use of a data set, and our results
support this claim. The combined tests reduce to a test
utilizing parental marker genotypes if all sibships have
parental information, and they reduce to a sibship test
if no parental information is available. Realistically,
some of the families will have genotypic information for
only one of the parents. In this case, the recommenda-
tions of Curtis and Sham (1995) should be used to de-
termine whether the transmission information can be
used without introduction of bias; if it cannot, then the
sibship information can be used instead. Alternatively,
the missing parental genotypes could be inferred; how-
ever, this would require estimation of marker-allele fre-
quencies and so would be subject to stratification
problems.

The results presented in the present study are meant
to both summarize and compare the sibship tests that
are currently available. These tests provide a promising
new area of family-based tests, particularly for late-onset
diseases. Our results have been presented for samples of
unrelated sibships. If any of the sibships are related, then
the tests are valid only as tests of linkage (Spielman and
Ewens 1998).
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Appendix

Relationship of AC2 and Z1, for a Biallelic Marker, for
Sibships with Minimal Configuration

For a biallelic marker, there are six sibship types with
minimal configuration (table A1). The total number of
each type in the data set will be denoted “Nij,” where i
represents the number of M1 marker alleles in the af-
fected individual and where j represents the number of
M1 marker alleles in the unaffected sibling. Boehnke and
Langefeld’s statistic, AC2, can be written in terms of Nij,
because

n � n � N � 2N � N (A1)11 22 21 20 10

and

n � n � N � 2N � N . (A2)12 21 12 02 01

Spielman and Ewens’ statistic, Z1, requires calculation
of the theoretical permutation mean and variance for
each sibship’s contribution to Y1. Given sibship i with
ti sibs, of which ai are affected and ui are unaffected, let
ri be the number of sibs with genotype M1M1 and let si

be the number of sibs with genotype M1M2; then

aiA � (2r � s ) (A3)1i i i ti

and

4r(t � r � s ) � s (t � s )i i i i i i iV � a u . (A4)1i i i 2t (t � 1)i i

For sibships with minimal configuration, anda � u � 1i i

, so that, on the basis of equations (A3) and (A4),t � 2i
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3
A � (N � N ) � (N � N )� 1i 21 12 20 02( )2i

1
#(1) � (N � N )10 01 ( )2

and

1
V � (N � N ) � (N � N )� 1i 21 12 20 02( )4i

1
#(1) � (N � N ) .10 01 ( )4

Given and the relation-Y � 2(N � N ) � N � N1 21 20 12 10

ships from equations (A1) and (A2),

n n11 21Y � A � ��1 1i 2 2i

and

n n N11 21 2V � � � ,� 1i 4 4 2i

where N2 is defined, by Curtis, as the number of sibships
of type 2 or type 5. Now AC2 and Z1 can be related:

2 2(n � n )1i 2iAC � �2 n � ni�1 1i 2i

2(n � n )11 21� 2 (from [A1] and [A2])[ ]n � n11 21

2[ ]2(Y �� A )1 i 1i

� 2 (from [A5]){ }n � n11 21

2(Y �� A )1 i 1i
� 2 # 4 (from [A6])[ ]4� V � 2N1i 2

2(Y �� A )1 i 1i
� 2 [ ]� V � N /2i 1i 2

� Vi 1i 2� 2 z .1( )� V � N /2i 1i 2

Hence, AC2 and Z1 are related by

� Vi 1i 2AC � 2 Z .2 1( )� V � N /2i 1i 2

References

Boehnke M, Langefeld CD (1998) Genetic association map-
ping based on discordant sib pairs: the discordant-alleles
test. Am J Hum Genet 62:950–961

Curtis D (1997) Use of siblings as controls in case-control
association studies. Ann Hum Genet 61:319–333

Curtis D, Sham PC (1995) A note on the application of the
transmission disequilibrium test when a parent is missing.
Am J Hum Genet 56:811–812

Kaplan NL, Martin ER, Weir BS (1997) Power studies for the
transmission/disequilibrium tests with multiple alleles. Am
J Hum Genet 60:691–702

Martin ER, Kaplan NL, Weir BS (1997) Tests for linkage and
association in nuclear families. Am J Hum Genet 61:
439–448

Ott J (1991) Analysis of human genetic linkage, rev ed. Johns
Hopkins University, Baltimore

Sham PC, Curtis D (1995) An extended transmission/disequi-
librium test (TDT) for multiallele marker loci. Ann Hum
Genet 59:323–336

Spielman RS, Ewens WJ (1996) The TDT and other family-
based tests for linkage disequilibrium and association. Am
J Hum Genet 59:983–989

——— (1998) A sibship test for linkage in the presence of
association: the sib transmission/disequilibrium test. Am J
Hum Genet 62:450–458


	A Comparative Study of Sibship Tests of Linkage and/or Association
	Summary
	Introduction
	Methods
	Notation
	Permutation Procedure
	Test Statistics
	Simulation Parameters

	Results
	x2 Approximation for TMSTDT and Tmcomb
	Tests of Linkage and Association
	Tests of Linkage
	The Combined Test Statistic: Tmcomb

	Discussion
	Acknowledgments
	References


